If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n^2-12n+1=0
a = 5; b = -12; c = +1;
Δ = b2-4ac
Δ = -122-4·5·1
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{31}}{2*5}=\frac{12-2\sqrt{31}}{10} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{31}}{2*5}=\frac{12+2\sqrt{31}}{10} $
| 19x=5+18x | | -10-10+p=-5p+10 | | 4g=2g-15+g | | 14x-(6x-8)=56 | | 2x-6=|4x+1| | | 15-2x=3x-2(2x+6) | | -48+10x-14x=36 | | 5(a+4)=4(a-3 | | (5x+1)+86=90 | | 10a+4+8a-2=11a+31 | | -3w^2-10w+1=−4w | | x-6=x−6=5x-25x−2 | | -9b+6=5 | | 7.2(x-1.5)=-144 | | V(3v+2)=0 | | x/2+7=2 | | x2^=108 | | 1=k7− 2 | | (2x+4)+52=90 | | 3x-3=4x-12 | | 5m+8=3(m+7) | | (3x+-4)=(6x+-5) | | 3(w-5)=(-2w-10) | | 5n-(8+4)-6n)2n-7)=114 | | 3(x+3)=4 | | C=39.62+0.50x | | 18=9+3p | | 2=22+5x | | 13-h-13=18-13 | | 3(w-5)=-2w-10) | | (X-6)+2x=90 | | 1/2y-4=3-1/4y |